博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
非递归遍历二叉树
阅读量:5260 次
发布时间:2019-06-14

本文共 4867 字,大约阅读时间需要 16 分钟。

二叉树的遍历如果使用递归调用基本没什么问题,这里主要是讲如何使用非递归方法实现二叉树的遍历。

由于递归调用程序实际上使用了栈来保存方法中的变量值,在非递归遍历的方法中我们需要基于栈的方法。先来看看这个方法

 
01 /// <summary>
02 /// 非递归中序遍历二叉树
03 /// </summary>
04 /// <param name="root"></param>
05 static void InOrderTraverse(BinaryTreeNode root)
06 {
07     BinaryTreeNode temp = root;
08     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
09     stack.Push(root);
10     while (stack.Count > 0)
11     {
12         while (temp != null)
13         {
14             temp = temp.left;
15             stack.Push(temp);
16         }
17         stack.Pop();
18         //如果为0证明这时右边节点为null
19         if (stack.Count > 0)
20         {
21             temp = stack.Pop();
22             Console.WriteLine(temp.data);
23             temp = temp.right;
24             stack.Push(temp);
25         }
26     }
27 }

节点temp在这里是起一个标识的作用,首先沿根节点往左下方进行查找,将存在的节点压入栈,里面的那个while循环结束后栈的最顶端一定是一个null,所以栈pop一下,然后这时进行读取操作,读取后压入读取节点的右子节点,进入下一个while循环,temp指向右子节点。

在这里使用栈能保证左边子节点访问后找到父节点,父节点访问后也弹出栈,将右子节点压入。这里右子节点的压入和前面一部分是对应的,保证stack.Pop()这句语句的正确性。如果我们不想在栈中压入多余的那个null这时该怎么办呢?将程序改成这样

 
01 /// <summary>
02 /// 非递归中序遍历二叉树
03 /// </summary>
04 /// <param name="root"></param>
05 static void InOrderTraverse2(BinaryTreeNode root)
06 {
07     BinaryTreeNode temp = root.left;
08     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
09     stack.Push(root);
10     while (stack.Count > 0 || temp != null)
11     {
12         while (temp != null)
13         {
14             stack.Push(temp);
15             temp = temp.left;
16         }
17         temp = stack.Pop();
18         Console.WriteLine(temp.data);
19         temp = temp.right;
20     }
21 }

只有确定是非null才将节点压入栈,但是这里会有一个问题,当temp指向根节点的右节点的时候,栈是空的,我们需要在while循环处多加一个判断,如果temp是null证明右节点不存在,循环结束。

到这里,程序基本上已经比较完美了,不过我还是要在这里折腾一下。

while循环中的while循环的条件是temp是否为null,所以,我可以用一个if/else来换一下

 
01 static void InOrderTraverse3(BinaryTreeNode root)
02 {
03     BinaryTreeNode temp = root.left;
04     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
05     stack.Push(root);
06     while (stack.Count > 0 || temp != null)
07     {
08         if (temp != null)
09         {
10             stack.Push(temp);
11             temp = temp.left;
12         }
13         else
14         {
15             temp = stack.Pop();
16             Console.WriteLine(temp.data);
17             temp = temp.right;
18         }
19     }
20 }

呵呵,有意思吧。编程真奇妙~

上面三个都是二叉树的非递归中序遍历方法,非递归先序遍历和中序差不多,开始从上往下把节点入栈的时候对节点进行操作就行了,比如第二个的中序遍历改成先序遍历就是

 
01 /// <summary>
02 /// 非递归先序遍历二叉树
03 /// </summary>
04 /// <param name="root"></param>
05 static void PreOrderTraverse(BinaryTreeNode root)
06 {
07     BinaryTreeNode temp = root.left;
08     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
09     Console.WriteLine(root.data);
10     stack.Push(root);
11     while (stack.Count > 0 || temp != null)
12     {
13         while (temp != null)
14         {
15             Console.WriteLine(temp.data);
16             stack.Push(temp);
17             temp = temp.left;
18         }
19         temp = stack.Pop();
20         temp = temp.right;
21     }
22 }

其他的几种对着中序改一下就行了

下面来讲一讲后序遍历,后序遍历由于遍历父节点是在遍历子节点之后,而且左节点和右节点遍历后的行为不一样,所以需要用变量来记录前一次访问的节点,根据前一次节点和现在的节点的关系来确定具体执行什么操作

 
01 static void PostOrderTraversa1(BinaryTreeNode root)
02 {
03     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
04     stack.Push(root);
05     BinaryTreeNode prev = null;
06     BinaryTreeNode curr = null;
07     while (stack.Count > 0)
08     {
09         curr = stack.Peek();
10         if (prev == null || prev.left == curr || prev.right == curr)
11         {
12             if (curr.left != null)
13             {
14                 stack.Push(curr.left);
15             }
16             else if (curr.right != null)
17             {
18                 stack.Push(curr.right);
19             }
20             else
21             {
22                 Console.WriteLine(curr.data);
23                 stack.Pop();
24             }
25         }
26         else if (curr.left == prev)
27         {
28             if (curr.right != null)
29             {
30                 stack.Push(curr.right);
31             }
32             else
33             {
34                 Console.WriteLine(curr.data);
35                 stack.Pop();
36             }
37         }
38         else if (curr.right == prev)
39         {
40             Console.WriteLine(curr.data);
41             stack.Pop();
42         }
43         prev = curr;
44     }
45 }
 
01 static void PostOrderTraversa2(BinaryTreeNode root)
02 {
03     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
04     stack.Push(root);
05     BinaryTreeNode prev = null;
06     BinaryTreeNode curr = null;
07     while (stack.Count > 0)
08     {
09         curr = stack.Peek();
10         if (prev == null || prev.left == curr || prev.right == curr)
11         {
12             if (curr.left != null)
13                 stack.Push(curr.left);
14             else if (curr.right != null)
15                 stack.Push(curr.right);
16         }
17         else if (curr.left == prev)
18         {
19             if (curr.right != null)
20                 stack.Push(curr.right);
21         }
22         else
23         {
24             Console.WriteLine(curr.data);
25             stack.Pop();
26         }
27         prev = curr;
28     }
29 }
 
01 /// <summary>
02 /// 使用双栈
03 /// </summary>
04 /// <param name="root"></param>
05 static void PostOrderTraversa3(BinaryTreeNode root)
06 {
07     Stack<BinaryTreeNode> stack = new Stack<BinaryTreeNode>();
08     Stack<BinaryTreeNode> output = new Stack<BinaryTreeNode>();
09     stack.Push(root);
10     BinaryTreeNode curr = null;
11     while (stack.Count > 0)
12     {
13         curr = stack.Pop();
14         output.Push(curr);
15         if (curr.left != null)
16             stack.Push(curr.left);
17         if (curr.right != null)
18             stack.Push(curr.right);
19     }
20     while (output.Count > 0)
21     {
22         Console.WriteLine(output.Peek().data);
23         output.Pop();
24     }
25 }
只所以保留这个文章是因为其中体现了非递归的特点。可以有效的节约栈资源。提高程序的运行效率。

转载于:https://www.cnblogs.com/javaexam2/archive/2011/07/25/2632905.html

你可能感兴趣的文章
Java 数组实例
查看>>
Java 方法实例
查看>>
Java 异常处理
查看>>
Java 目录
查看>>
Java 数据结构
查看>>
MYSQL5.7.24编译安装
查看>>
mysql启动过程
查看>>
ORACLE的启动过程
查看>>
ORACLE 清理SYSAUX表空间
查看>>
postgressql启动与关闭
查看>>
sqlserver数据库的启动
查看>>
浅析Kubernetes资源管理-资源预留
查看>>
机器学习在360私有云容器服务上的实践
查看>>
【Flink】数据流编程模型
查看>>
应用Python来计算排列中的逆序数个数
查看>>
2017前端面试题总结
查看>>
Http GetPost网络请求
查看>>
SWIFT国际资金清算系统
查看>>
关于拷贝构造函数与赋值构造函数的深刻解析
查看>>
Sping注解:注解和含义
查看>>